
SRM Status Alarms
Problem analysis
Tue, Jan 29, 2002

For some months, occasional alarm messages that signify missing responses from SRM data 
collection have occurred. This note describes how the cause was determined.

Introduction
Linac front-ends obtain a large portion of their controls data via Smart Rack Monitors, 

or SRMs, each of which connects to the actual hardware interfaces and acts as a front-end’s 
front-end. One or more SRMs are connected via arcnet (modified token-passing standard) 
network to each Linac front-end, which resides on a vxWorks-based MVME-2401 PowerPC 
CPU board. Early in every Linac 15 Hz cycle, about 3 ms after the 0x0C clock event, the front-
end sends a special request message to all of its connected SRMs, the meaning of which is “read 
all your controls data and return it in a single arcnet reply frame.” The SRMs do not know 
about accelerator 15 Hz timing; they key their cyclic activities to this request. 

During the next 10–12 ms, the front-end waits for each SRM to deliver its reply, mapping the 
data received into the front-end’s analog and digital data pool. A deadline is established in case 
one or more SRM replies is not received. If the deadline is exceeded, a corresponding software 
status bit is not set, which is monitored by the alarm scan. One Acnet device in each front-end is 
mapped to all such SRM status bits, so that missing replies produce an Acnet alarm message. It 
has been observed on occasion that such alarm messages do occur, and it is often the case that 
this happens at some time during an Acnet Big Save operation, in which all devices in the Acnet 
database are queried via one-shot requests and logged. This operation may take about 30 
minutes for the entire accelerator, although only about 30 seconds elapse for collecting all Linac 
devices.

Possible solutions
We have sought to understand the cause of such SRM status errors. Is it because of a 

hardware or software problem in the SRM or in the arcnet network that ties them together? Is 
the deadline used for detecting missing replies too optimistic? Since that deadline is expressed 
as a time after the 15 Hz interrupt, can it be that some task activity delays the start of normal 15 
Hz processing enough so that the request message is sent too late to give the SRM a chance to 
return its reply before the deadline? How does the Big Save operation affect the likelihood of 
such alarms?

The SRM reply deadline in several of the stations was set to 16 ms. Since the normal return of 
the latest SRM reply is observed to be about 12 ms, it was thought that this 16 ms deadline 
would be sufficient. If it were not, we would certainly want to know why.

Meet the 4.5 ms anomaly
It has been observed in recent months that some mysterious high-priority task activity 

occurs in the vxWorks-based systems. The initial indication of this came from routine timing 
diagnostics that each front-end supports for the execution time of each entry in the Data Access 
Table, which houses a list of instructions that are interpreted to update the data pool during 
each 15 Hz cycle. Many of these entries execute in much less than 100 us; an empty entry 
“executes” in 1 us, which represents the overhead of instruction interpretation and sequencing. 
Not only is each entry’s execution time updated every cycle, but a worst case execution time for 
each entry is also maintained. It was observed that after a few hours and days, more and more 
of these short entries exhibited maximum execution times of 4.5 ms. This implied that 
something was occurring during this time that took time away from the expected activities in 



that front-end. The system software is written so that no task-switching takes place during Data 
Access Table processing, so that a partially-complete data pool can never be seen. (This is part 
of what guarantees the ability to collect 15 Hz correlated data from the 15 Hz Linac.) The 
conclusion was that either a high priority task or a long-winded interrupt routine was to blame.

A local application called DATM was written to monitor the Data Access Table entry execution 
times, and if any was observed to be unusually long, a one-shot data request for recent task 
activity diagnostics was issued, the reply to which was logged. From the results, it was seen 
that a high priority task was the culprit. Its vxWorks task priority, where low numbers mean 
high priority, was 50. (System task priorities range from 110–140.) A simple check of the task 
listing, using the “i” command at a vxWorks prompt, showed that the vxWorks tNetTask is 
the only one associated with priority 50. Since tNetTask typically executes in 40 us, an elapsed 
time of 4.5 ms stands out like a sore thumb.

Another local application called TSKM was written to investigate this further. It monitored task 
activity diagnostics continuously to identify occasions when the priority 50 task execution time 
was measured to be about 4.5 ms, logging task activity occurring immediately before and after 
that time. The results were limited to occasions when another task was preempted by this one, 
since the tNetTask’s measured elapsed time cannot be relied upon when it starts at a time 
when the system is truly idle. The results showed that it was most often the Update task 
(including Data Access Table processing) that was preempted by a priority 50 task. 
Furthermore, it was clear that these occasions were not at all random in time, but appeared to 
occur every 5 seconds. But the 5 seconds did not appear to be synchronous with any known 
activity. It was not synchronous with the 0x02 clock event, which happens to occur every 5 
seconds, nor was it synchronous with accelerator 15 Hz timing, which is itself synchronous 
with the line frequency.

If it is the tNetTask that is causing these 4.5 ms preemptions, then it would likely be 
associated with some kind of network activity, although nothing was recorded in the system’s 
internal network diagnostics on this. To eliminate the possibility of some multicast-driven 
messages causing it, sensitivity to all multicast IP addresses was removed from the test node. 
The effect was still observed. A network Sniffer was attached to monitor all network activity 
occurring at the test node. But no network activity was observed to be occurring at a 5 second 
period, all the while that the TSKM local application was registering the same anomalous 5 
second task activity. Investigation of the cause is ongoing. For now, we must assume its 
occurrence is a given.

SRM status again
Since there is a mysterious 4.5 ms time-out occurring at any and all times through the 15 

Hz cycle, it may play a part in the occurrence of SRM status errors. In those nodes that used a 
16 ms deadline time, when the last SRM reply arrives at 12 ms, the 4.5 ms problem implies that 
16 ms is too optimistic. So the Data Access Table contents in all such nodes were modified to 
use a 24 ms deadline. The extra 8 ms should easily cover this problem. But what does this have 
to do with Big Save operations? The answer is that it doesn’t, and occasional SRM alarms still 
occurred. So there may be more than one cause to the SRM status errors.

A third local application was written to watch for SRM status alarms, then capture recent task 
activity. It captured the last 87 entries in the task execution log, along with the most recent 
network diagnostics, monitoring several front-ends simultaneously.

The results showed a surprising effect. The ACReq task, which supports Acnet protocols such as 

SRM Status Alarms p. 2 



RETDAT and SETDAT, was sometimes observed to execute for 16 ms, and such occasions 
appeared to occur around the time of Big Save operations. Now a 16 ms execution time for any 
system task, except for the Update task while it awaits SRM replies, is shocking! A check of the 
RETDAT log in Linac node0600, which as the designated Linac data server receives nearly all 
Acnet RETDAT requests, showed no request was received at this time. But the network 
diagnostics in the affected front-end did show something was received. That only meant it was 
not a RETDAT message. ACReq is in the path for handling all Acnet protocols. The most likely 
after RETDAT and SETDAT is FTPMAN, which is used for collecting data for supporting “Fast 
Time” plots or Snapshot plots.

One FTPMAN message type is used prior to requesting plot data in order to determine what 
kinds of plots can be supported for a set of devices. The set size is normally limited to 5 devices. 
One can imagine this to be a simple message type to support. But although it is simple, it has a 
problem in the PowerPC implementation.

CINFO system table
The CINFO table houses information about analog channels that is used only by a small 

subset of channels, so that it is not included in the channel-indexed array of records that is the 
ADESC system table. For each CINFO entry, the channel number to which it relates is included 
in the entry, so that a search is needed to find a match on given channel.

So why should this matter? How much of a search can it be, and how significant can it be, given 
that the PowerPC is a 233 MHz CPU? The reason is the speed of access to nonvolatile memory, 
where most system tables, including CINFO, reside. Every access to nonvolatile memory 
requires about 1 µs, which represents more than 200 wait states, to put it another way. For this 
CPU, it is very slow. What’s more, accesses to this memory cannot be cached. The memory 
resides on a PMC board plugged into the PCI bus on the CPU board. Because of this slow 
access time, we recently rewrote the Alarm task logic so that it uses the least number of 
accesses to this memory during its scan, with the result that a complete alarm scan in the worst 
case front-end is now performed in less than 1 ms.

The CINFO table was made large in the PowerPC systems, since they were new installations, 
and we weren’t sure what needs the future would hold for them. Each CINFO table was 
installed with room for 512 eight-byte entries. Actually, entries in this table can occupy one or 
more of these entries, but 8 bytes represents the granularity. A search of this table is done based 
on an entry type number and a channel number. (The code was not written in a way that 
recognizes the slow access time of nonvolatile memory.) The search logic scans through each 
entry looking for a match on the type of the entry and on the given channel number. To get to 
the next entry, it must take into account the size of the current entry, which is a field in the 
entry. So, it might require 3 accesses per entry. With 512 entries to search, for a channel that has 
no entry, it might take 1.5 ms for one search. But one search may not be enough. Using different 
type numbers, additional searches may be performed.

After adding a diagnostic to the TSKM local application to keep track of the worst-case task 
execution times for each task, it was found that a query of the type above for one channel, for 
which no CINFO entry existed, required about 4 ms. If one asked for 4 devices, none of which 
had a table entry, one might expect that 16 ms would be needed. This is probably what was 
happening to cause such long ACReq task execution times. As to why such requests could occur 
for devices that have no plot capability and therefore have no entry in the CINFO table, it is just 
something that is routinely done during a Big Save, even though no plotting of such data may 
be contemplated.

SRM Status Alarms p. 3 



As to why such unusually long task execution times can cause SRM status errors, one must bear 
in mind that such requests can arrive at any time during the 15 Hz cycle, including times near 
the end of the cycle. If ACReq is busy, it can delay the normally prompt start of the Update 
task, so that the request for SRM data over arcnet is delayed, and the arrival time of the ensuing 
replies can extend beyond the deadline.

Solutions
Part of the solution should be to rewrite the logic that determines what plot capabilities 

a channel has so that it is optimized for the least number of accesses to nonvolatile memory. But 
what can be done immediately is to reduce the size of the CINFO table. The vast majority of 
front-ends have no entries installed in that table. By modifying those nodes so that the CINFO 
table size is small, the inefficiencies that exist in the current searching algorithm will not be so 
disastrous.

As soon as this was understood, the CINFO tables were reduced greatly. Because it was the 
simplest and quickest thing to do, late on a Friday afternoon, those front-ends with empty 
CINFO tables were set up with only two entries, rather than the default 512 entries. Those few 
that had entries installed had their declared sizes much reduced. A simple test was made to 
measure the time of a request for a single device in a node that has two entries, with the result 
that only 200 us execution time was needed in the ACReq task. In the worst case node, with 96 
entries in its CINFO table, such a request for 4 devices might take 3 ms. But with a rewrite of 
the logic, this can be greatly reduced.

It is hoped that this remedy will nearly eliminate SRM status alarms, except for cases in which 
something is really broken or the SRM is down. If more mysterious SRM status errors occur, 
however, additional tests will be made to find the cause.

We need to keep in mind the limitations brought about by slow access to nonvolatile memory. 
There may be other similar inefficient processing yet to be discovered, in which the logic was 
not written to anticipate such slow accesses.

The achievement of reliable 15 Hz performance in a front-end is not free. It requires careful 
monitoring of task execution times. Several timing diagnostics are included in Linac-style front-
ends that can help verify consistent 15 Hz operation.

SRM Status Alarms p. 4 


